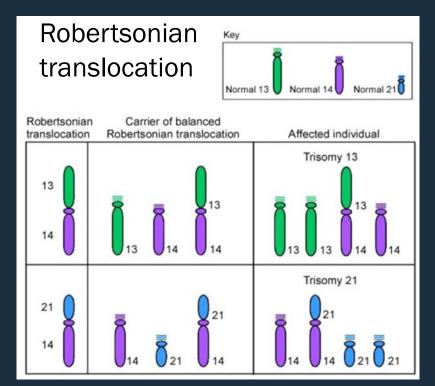
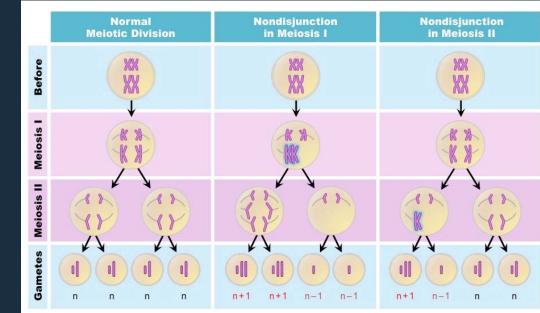

TRISOMY 21


Maddie Berra Genetics 2020

Background information

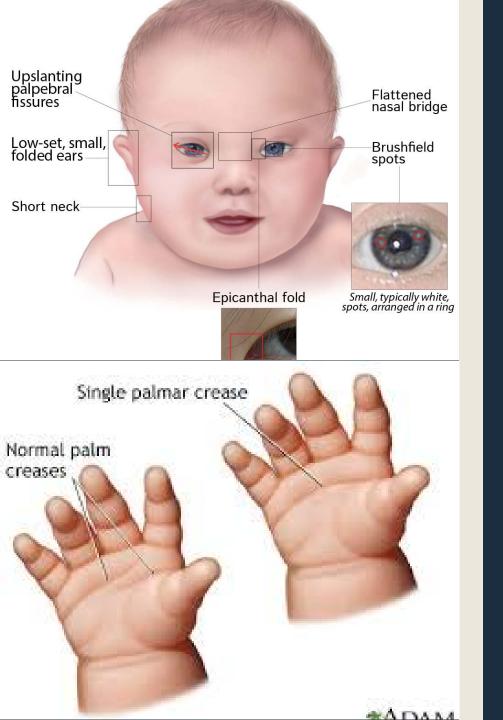
- Epidemiology
 - 1 in 800 live births
 - Most common autosomal abnormality
 - Most common cause of intellectual disability
 - Risk of autosomal trisomies increases steeply with age
- Etiology
 - Most commonly secondary to nondisjunction resulting in Trisomy (94%)
 - Can result from failure to pair up properly, premature separation, or failure of separation
 - More rarely can result from mosiacisim (2.4%)
 - 75% in Meiosis 1, 25% in Meiosis II
 - A trisomy that occurs after fertilization, so trisomy present in some cells but not all
 - Variable pheonotype
 - Also uncommonly due to unbalanced translocations (Robertsonian translocations) (3.3%)
 - **75% de novo translocations, 25% familial**



- 15-29 years 1 case in 1500 live births
- 30-34 years 1 case in 800 live births
- 35-39 years 1 case in 270 live births
- 40-44 years 1 case in 100 live births
- Older than 45 years 1 case in 50 live births

Nondisjunction

GENETICS


Prenatal Testing

Test	Timing	Advantages	Disadvantages
 1st Trimester Combined Test PAPP bHCG Nuchal translucency 	9-13	Early screening	Not diagnostic
Cell-free fetal DNA	>10	High sensitivity and specificity for aneuploidy	Not diagnostic
Chorionic Villis Sampling	10-13	Definitive karyotype diagnosis	Invasive, risk of miscarriage
 2nd Trimester Quad Screen MSAFP Estriol bHCG Inhibin A 	15-22	Screens for neural tube defects as well as aneuploidy	Not diagnostic
Amniocentesis	15-20	Definitive karyotype diagnosis	Invasive, risk of membrane rupture, fetal injury, pregnancy loss
2 nd Trimester Ultrasound	18-20	Measures growth and anatomy	Cannot identify all anomalies

	Seco	ond trimester	results		
Increased ris	sk	hCH	Estriol	AFP	Inhibin A
Open spina bifida		Normal	Normal	High	n/a
Anencephaly		Low	Low	High	n/a
Down syndro	ome	High	Low	Low	High
Edwards Low syndrome		Low	Low	Low	n/a

Interpretation of screening results

- First trimester combined screen findings suggestive of Trisomy 21
 - Increased NT
 - Increased bHCG
 - Decreased PAPP

Features

- Physical features
 - Upslanting palpebral fissures
 - Epicanthic folds
 - Flat facial profile/flat nasal bridge
 - Low-set small ears
 - Brachycephaly
 - Protruding tongue
 - Short neck with excessive skin at nape
 - Transverse palmar crease
 - Space between the first and second toes (sandal gap)
 - Hyperflexibility of joints
 - Hypotonia
 - Wide spaced nipples
- Developmental and behavioral features
 - Mild to moderate intellectual disability
 - Delayed motor and speech milestones
 - Often, intact language comprehension with delayed production
 - Concomitant Autism (7%)

Associated Health Problems

- Cardiovascular
 - A little under one half of individuals have associated CHD
 - Complete atrioventricular septal defect (CAVSD) 37 percent
 - Ventricular septal defect (VSD) 31 percent
 - ASD 15 percent
 - Partial atrioventricular septal defect (PAVSD) 6 percent
 - Tetralogy of Fallot (TOF) 5 percent
 - PDA 4 percent
- Gastrointestinal
 - Duodenal atresia (2.5%)
 - Celiac disease (5-16x increased risk than general population)
 - Less commonly, but more common than general population: TEF, Hirschsprung

Growth

- Short stature (important to reference Ds specific growth chart)
- Increased rate of obesity

Vision and hearing

- 5% develop cataracts
- Increased rate of strabismus, nystagmus and refractive errors
- 38-78% with hearing impairment (often secondary to recurrent otitis media)

Endocrine

- 35% with hyperthyroidism by age 25
- Increased risk of Type 1 Diabetes

Hematologic

- 65% of newborns with polycythemia
- 1-1.5% lifetime risk of Leukemia

Pulmonary

- Increased risk of OSA
- Increased risk of pulmonary hypertension in the neonatal period

MSK

- Atlantoaxial instability leading to risk of cervical subluxation and spinal cord compression
- Hip dislocation

Associated Health Problems

Health Supervision

Postnatal diagnosis

- Karyotyping and FISH
 - The full karyotype is necessary as otherwise would not be able to pick up translocations
- Every neonate needs an echocardiogram
- Regular hearing screens and eye exams
- Sleep study by age 4 to monitor for OSA
- Thyroid studies: starting at 6-12 mo and then annually
- CBC (or at least Hgb) for leukemia monitoring: annually
- Any signs of atlantoaxial instability (myelopathy, neck pain, fatigue): spinal films

References

- Genetics Home Reference: Down Syndrome
- MedScape: Down Syndrome
- Genetics. In: Cunningham F, Leveno KJ, Bloom SL, Dashe JS, Hoffman BL, Casey BM, Spong CY. eds. Williams Obstetrics, 25e New York, NY: McGraw-Hill; . http://accessmedicine.mhmedical.com/content. aspx?bookid=1918§ionid=157634877. Acces sed April 02, 2020.
- Up to Date: First-trimester combined test and integrated tests for screening for Down syndrome and trisomy 18
- Meeks NL, Saenz M, Tsai A, Elias ER. Genetics & Dysmorphology. In: Hay, Jr. WW, Levin MJ, Deterding RR, Abzug MJ. eds. Current Diagnosis & Treatment: Pediatrics, 24e New York, NY: McGraw-Hill;

. http://accessmedicine.mhmedical.com/content. aspx?bookid=2390§ionid=189084922. Acce ssed April 02, 2020.

 Up to Date: Down syndrome: Clinical features and diagnostics